Telecomunicaciones Industria
Guía práctica de la ciencia de superficies (2025)

529757429dc85e51d966438130e7ca4b?s=32&d=mm&r=g Escrito por Dr. Amit Pratap Singh 529757429dc85e51d966438130e7ca4b?s=32&d=mm&r=g | 529757429dc85e51d966438130e7ca4b?s=32&d=mm&r=g Reseña escrita por Dr. Alidad Amirfazli 529757429dc85e51d966438130e7ca4b?s=32&d=mm&r=g |

This is a practical guide to Surface Science for researchers working in the Telecommunications Industry.

En esta nueva guía aprenderás todo sobre:

  • Principios cruciales de la ciencia de superficies
  • The significance of surface science measurements for the Telecommunications industry
  • Normas y directrices ASTM aplicables

Vamos a sumergirnos en ello.

telecom

Capítulo 1: Introducción

In today’s world, telecommunications system can be characterized by voice, data, and video networks. This sector is continuously enabling global connectivity, facilitating information exchange, and driving economic growth. Extending the life of crucial components like outdoor antennas and safeguarding cables from environmental damage are some major challenges faced by this sector. And in this regard surface properties, which plays crucial role in the interaction between different materials and their surroundings, becomes very important.

We use the important surface properties below to understand the behavior of Telecommunications products and improve their quality.

Capítulo 2: Medición del ángulo de contacto

El ángulo de contacto cuantifica la humectabilidad de una superficie representando el ángulo entre la superficie de un líquido y una superficie sólida.
Dropletlab Research
La imagen de muestra se toma del tensiómetro de laboratorio de gotas.
Droplet Lab ofrece métodos de Young-Laplace y polinómicos en nuestro tensiómetro.

Joven – Método Laplace

Método polinómico

Ángulo de contacto dinámico

Idealmente, cuando colocamos una gota sobre una superficie sólida, existe un ángulo único entre el líquido y la superficie sólida. Podemos calcular el valor de este ángulo de contacto ideal (el llamado ángulo de contacto de Young) utilizando la ecuación de Young. En la práctica, debido a la geometría de la superficie, la rugosidad, la heterogeneidad, la contaminación y la deformación, el valor del ángulo de contacto en una superficie no es necesariamente único, sino que se encuentra dentro de un rango. Llamamos a los límites superior e inferior de este rango el ángulo de contacto de avance y el ángulo de contacto de retroceso, respectivamente. Los valores de los ángulos de contacto de avance y retroceso para una superficie sólida también son muy sensibles. Pueden verse afectados por muchos parámetros, como la temperatura, la humedad, la homogeneidad y la contaminación diminuta de la superficie y el líquido. Por ejemplo, los ángulos de contacto de avance y retroceso de una superficie pueden diferir en diferentes ubicaciones.

Ángulo de contacto dinámico frente a ángulo de contacto estático

Las superficies y los recubrimientos prácticos muestran naturalmente histéresis de ángulo de contacto, lo que indica un rango de valores de equilibrio. Cuando medimos ángulos de contacto estáticos, obtenemos un solo valor dentro de este rango. Confiar únicamente en mediciones estáticas plantea problemas, como una repetibilidad deficiente y una evaluación incompleta de la superficie con respecto a la adherencia, la limpieza, la rugosidad y la homogeneidad.

En aplicaciones prácticas, necesitamos comprender la facilidad de dispersión del líquido de una superficie (ángulo de avance) y la facilidad de eliminación (ángulo de retroceso), como en la pintura y la limpieza. La medición de los ángulos de avance y retroceso ofrece una visión holística de la interacción líquido-sólido, a diferencia de las mediciones estáticas, que arrojan un valor arbitrario dentro del rango.

Esta información es crucial para las superficies del mundo real con variaciones, rugosidad y dinámica, lo que ayuda a industrias como la cosmética, la ciencia de los materiales y la biotecnología a diseñar superficies efectivas y optimizar los procesos.

Aprenda cómo se realiza la medición del ángulo de contacto en nuestro tensiómetro

Para una comprensión más completa de la medición del ángulo de contacto, lea nuestra medición del ángulo de contacto: la guía definitiva

Capítulo 3: Medición de la tensión superficial

Esta propiedad mide la fuerza que actúa sobre la superficie de un líquido, con el objetivo de minimizar su superficie.

Surface Tension Measurement
La imagen de muestra se toma del tensiómetro de laboratorio de gotas

Tensión superficial dinámica

La tensión superficial dinámica difiere de la tensión superficial estática, que se refiere a la energía superficial por unidad de área (o fuerza que actúa por unidad de longitud a lo largo del borde de una superficie líquida).

La tensión superficial estática caracteriza el estado de equilibrio de la interfaz líquida, mientras que la tensión superficial dinámica explica la cinética de los cambios en la interfaz. Estos cambios podrían implicar la presencia de tensioactivos, aditivos o variaciones en la temperatura, la presión y la composición en la interfaz.

Cuándo utilizar la medición dinámica de la tensión superficial

La tensión superficial dinámica es esencial para los procesos que implican cambios rápidos en la interfaz líquido-gas o líquido-líquido, como la formación de gotas y burbujas o la coalescencia (cambio de área superficial), el comportamiento de las espumas y el secado de pinturas (cambio de composición, por ejemplo, evaporación del solvente). Lo medimos analizando la forma de una gota colgante a lo largo del tiempo.

La tensión superficial dinámica se aplica a diversas industrias, incluidas las cosméticas, los recubrimientos, los productos farmacéuticos, la pintura, los alimentos y las bebidas, y los procesos industriales, donde la comprensión y el control del comportamiento de las interfaces líquidas son esenciales para la calidad del producto y la eficiencia del proceso.

Aprenda cómo se realiza la medición de la tensión superficial en nuestro tensiómetro

Para una comprensión más completa de la medición de la energía superficial, lea nuestra medición de la tensión superficial: la guía definitiva

Capítulo 4: Medición de la energía superficial

La energía superficial se refiere a la energía requerida para crear una unidad de área de una nueva superficie.
231
La imagen de muestra se toma del tensiómetro de laboratorio de gotas

Aprenda cómo se realiza la medición de la energía superficial en nuestro tensiómetro

Para una comprensión más completa de la medición de la energía superficial, lea nuestra medición de la energía superficial: la guía definitiva

Capítulo 5: Medición del ángulo de deslizamiento

El ángulo de deslizamiento mide el ángulo en el que una película líquida se desliza sobre una superficie sólida. Se emplea comúnmente para evaluar la resistencia al deslizamiento de una superficie.

sliding angle 1
La imagen de muestra se toma del tensiómetro de laboratorio de gotas

Aprenda cómo se realiza la medición del ángulo de deslizamiento en nuestro tensiómetro

Para una comprensión más completa de la medición del ángulo de deslizamiento, lea nuestra medición del ángulo de deslizamiento: la guía definitiva

Capítulo 6: Aplicaciones en el mundo real

Within the Telecommunications industry, several case studies exemplify the advantages of conducting surface property measurements.

Antenna Performance Optimization Using Optimized Surface Coatings

Challenge: Telecom companies face challenges with signal attenuation during heavy rain (rain fade) and disruptions due to ice and snow accumulation on infrastructure like antennas and satellite dishes. These issues can severely impact signal transmission reliability.

Solution: The company aimed to enhance 5G antenna performance under rainy conditions by developing superhydrophobic coatings. Through rigorous experiments with different coatings, they optimized contact angles to design surfaces with high water repellency. This innovation significantly reduced rain attenuation by preventing water droplets from interfering with signal transmission. As a result, the antennas maintained strong signal strengths even during heavy rain.

Moreover, in cold regions prone to ice and snow buildup on satellite dishes, the company conducted tests to identify superhydrophobic materials with large contact angles and low sliding angles. These materials effectively minimized ice adhesion, ensuring uninterrupted signal reception. By reducing the accumulation of ice on the dishes, they enhanced operational reliability and maintained consistent signal transmission in extreme weather conditions.

telecom antenna
cable insulation
Improving Cable Insulation in Humid Environments

Desafiar : Water ingress into cables affects signal transmission.

Solución : Optimizing the surface tension values can prevent water ingress into cables. Lowering surface tension enhances the water-repellent properties of cable insulation. A telecommunications cable manufacturer develops cables with insulation materials specially designed with low surface tension. This kind of modification will improve water resistance which will reduce the risk of signal degradation in humid environments and ensure the long-term reliability of the communication infrastructure.

Preventing Soil Adhesion on Telecom Infrastructure by Optimizing Sliding Angle

Challenge: Telecom infrastructure, particularly ground-based equipment cabinets, often face issues with soil and mud adhesion. This accumulation not only affects the aesthetics but also impacts the performance and maintenance of telecom components.

Solution: To prevent soil adhesion on telecom infrastructure, the researchers measure and optimize the sliding angle of equipment cabinet surfaces. By selecting materials or applying coatings that achieve a lower sliding angle, they reduce the tendency of soil and mud to adhere to the surfaces. This innovation facilitates easier cleaning and maintenance of the cabinets, ensuring that telecom equipment remains free from environmental contaminants.

equipment cabinet

Somos sus socios en la resolución de su negocio y tecnología Desafíos

Si está interesado en implementar estas u otras aplicaciones, póngase en contacto con nosotros.

Capítulo 7: Normas y directrices

In an industry where precision reigns supreme, where do Telecommunications manufacturers turn to ensure their products can survive scrutiny? The answer lies in standards and guidelines: the compass that guides cosmetics manufacturers through the complex maze of quality and performance.

astm
ASTM D7334 – Standard Practice for Surface Wettability of Coatings, Substrates and Pigments by Advancing Contact Angle Measurement

This standard provides guidelines for measuring advancing contact angles, which is important for evaluating surface wettability and adhesion characteristics of coatings and materials used in telecom equipment.

iso logo
ISO 15989 – Surface Chemical Analysis – Contact Angle Measurement of Solid Surfaces by Axisymmetric Drop Shape Analysis

This ISO standard specifies a method for measuring the contact angle of liquids on solid surfaces using axisymmetric drop shape analysis. It is applicable to evaluating the surface properties of materials used in telecom equipment.

Ahora te toca a ti

Esperamos que esta guía te haya enseñado cómo aplicar la ciencia de superficies en la industria cosmética.

Ahora nos gustaría entregárselo a usted:

De cualquier manera, háganoslo saber dejando un comentario a continuación ahora mismo

Contesta

Su dirección de correo electrónico no será publicada. Los campos obligatorios están marcados *

Descargar Experimento