Revisado: 28
This is a practical guide to Surface Science for researchers working in the Shipbuilding Industry.
En esta nueva guía aprenderás todo sobre:
Vamos a sumergirnos en ello.
The shipbuilding industry encompasses both the engineering behind ship development and the industrial sectors responsible for completing and repairing ships. This complex field involves various sectors, including the construction of vessels for commercial shipping, naval defense, and recreational boating. Surface properties such as contact angle, sliding angle, surface tension, and surface energy are crucial for ensuring ships’ integrity, performance, and longevity.
We use the important surface properties below to understand the behavior of Shipbuilding products and improve their quality.
Joven – Método Laplace
Método polinómico
Ángulo de contacto dinámico
Idealmente, cuando colocamos una gota sobre una superficie sólida, existe un ángulo único entre el líquido y la superficie sólida. Podemos calcular el valor de este ángulo de contacto ideal (el llamado ángulo de contacto de Young) utilizando la ecuación de Young. En la práctica, debido a la geometría de la superficie, la rugosidad, la heterogeneidad, la contaminación y la deformación, el valor del ángulo de contacto en una superficie no es necesariamente único, sino que se encuentra dentro de un rango. Llamamos a los límites superior e inferior de este rango el ángulo de contacto de avance y el ángulo de contacto de retroceso, respectivamente. Los valores de los ángulos de contacto de avance y retroceso para una superficie sólida también son muy sensibles. Pueden verse afectados por muchos parámetros, como la temperatura, la humedad, la homogeneidad y la contaminación diminuta de la superficie y el líquido. Por ejemplo, los ángulos de contacto de avance y retroceso de una superficie pueden diferir en diferentes ubicaciones.
Las superficies y los recubrimientos prácticos muestran naturalmente histéresis de ángulo de contacto, lo que indica un rango de valores de equilibrio. Cuando medimos ángulos de contacto estáticos, obtenemos un solo valor dentro de este rango. Confiar únicamente en mediciones estáticas plantea problemas, como una repetibilidad deficiente y una evaluación incompleta de la superficie con respecto a la adherencia, la limpieza, la rugosidad y la homogeneidad.
En aplicaciones prácticas, necesitamos comprender la facilidad de dispersión del líquido de una superficie (ángulo de avance) y la facilidad de eliminación (ángulo de retroceso), como en la pintura y la limpieza. La medición de los ángulos de avance y retroceso ofrece una visión holística de la interacción líquido-sólido, a diferencia de las mediciones estáticas, que arrojan un valor arbitrario dentro del rango.
Esta información es crucial para las superficies del mundo real con variaciones, rugosidad y dinámica, lo que ayuda a industrias como la cosmética, la ciencia de los materiales y la biotecnología a diseñar superficies efectivas y optimizar los procesos.
Aprenda cómo se realiza la medición del ángulo de contacto en nuestro tensiómetro
Para una comprensión más completa de la medición del ángulo de contacto, lea nuestra medición del ángulo de contacto: la guía definitiva
Esta propiedad mide la fuerza que actúa sobre la superficie de un líquido, con el objetivo de minimizar su superficie.
Tensión superficial dinámica
La tensión superficial dinámica difiere de la tensión superficial estática, que se refiere a la energía superficial por unidad de área (o fuerza que actúa por unidad de longitud a lo largo del borde de una superficie líquida).
La tensión superficial estática caracteriza el estado de equilibrio de la interfaz líquida, mientras que la tensión superficial dinámica explica la cinética de los cambios en la interfaz. Estos cambios podrían implicar la presencia de tensioactivos, aditivos o variaciones en la temperatura, la presión y la composición en la interfaz.
La tensión superficial dinámica es esencial para los procesos que implican cambios rápidos en la interfaz líquido-gas o líquido-líquido, como la formación de gotas y burbujas o la coalescencia (cambio de área superficial), el comportamiento de las espumas y el secado de pinturas (cambio de composición, por ejemplo, evaporación del solvente). Lo medimos analizando la forma de una gota colgante a lo largo del tiempo.
La tensión superficial dinámica se aplica a diversas industrias, incluidas las cosméticas, los recubrimientos, los productos farmacéuticos, la pintura, los alimentos y las bebidas, y los procesos industriales, donde la comprensión y el control del comportamiento de las interfaces líquidas son esenciales para la calidad del producto y la eficiencia del proceso.
Aprenda cómo se realiza la medición de la tensión superficial en nuestro tensiómetro
Para una comprensión más completa de la medición de la energía superficial, lea nuestra medición de la tensión superficial: la guía definitiva
Aprenda cómo se realiza la medición de la energía superficial en nuestro tensiómetro
Para una comprensión más completa de la medición de la energía superficial, lea nuestra medición de la energía superficial: la guía definitiva
El ángulo de deslizamiento mide el ángulo en el que una película líquida se desliza sobre una superficie sólida. Se emplea comúnmente para evaluar la resistencia al deslizamiento de una superficie.
Aprenda cómo se realiza la medición del ángulo de deslizamiento en nuestro tensiómetro
Para una comprensión más completa de la medición del ángulo de deslizamiento, lea nuestra medición del ángulo de deslizamiento: la guía definitiva
Within the Shipbuilding industry, several case studies exemplify the advantages of conducting surface property measurements.
Challenge: A ship painting company faced uneven surface coatings due to the coating fluid’s viscosity, surface tension, and the substrate’s contact angle.
Solution: The company’s engineering team discovered that using a coating liquid with a contact angle less than 90° caused a pinning effect, reducing surface unevenness. By adjusting the contact angle to create this effect, they mitigated the impact of uneven coatings, leveraging the interplay between fluid viscosity and the substrate’s surface energy.
Challenge: The superhydrophobic coatings used in shipbuilding were expensive and complicated to fabricate.
Solution: Researchers developed cost-effective, mechanically stable micro/nano superhydrophobic coatings by combining laser processing with low-surface energy materials. These coatings, exhibiting excellent hydrophobicity through contact angle and sliding angle measurements, provided durable water repellency, simplifying the superhydrophobic coating process.
Challenge: Cargo shipping companies needed to reduce fuel consumption and emissions.
Solution: Companies adopted innovative hull coatings with low surface energy and sliding angles to minimize friction with seawater. By enhancing hydrodynamic efficiency, these coatings led to significant fuel savings, reduced operational costs, and a lower carbon footprint. Droplet Lab’s portable instrument can enable accurate measurement of surface energy and sliding angles, ensuring these coatings’ effectiveness in real maritime conditions.
Challenge: Aluminum 7075, despite its high strength, suffered from corrosion, limiting its use in subsea industries.
Solution: The research team experimented with bare aluminum and oil-impregnated anodic aluminum oxide (AAO) surfaces. Salt spray and pressure tests revealed that the oil-impregnated AAO maintained a high contact angle, significantly improving corrosion resistance. This modification made Aluminum 7075 viable for subsea applications.
Challenge: Slippery deck surfaces posed safety concerns.
Solution: To enhance deck surface hydrophobicity, engineers performed contact angle measurements on various surface treatments. Optimizing these treatments increased hydrophobicity, reducing slip risks in wet conditions and improving safety.
Si está interesado en implementar estas u otras aplicaciones, póngase en contacto con nosotros.
In an industry where precision reigns supreme, where do Shipbuilding manufacturers turn to ensure their products can survive scrutiny? The answer lies in standards and guidelines: the compass that guides cosmetics manufacturers through the complex maze of quality and performance.
This ASTM standard provides guidance on measuring advancing contact angles, which can be relevant to surface properties. According to this standard, a surface with high wetting capability is more likely to achieve strong adhesion and a desirable appearance when coated. Additionally, it is less prone to surface tension-related defects such as crawling, cratering, pinholing, and orange peel. Wetting can be defined by a low advancing contact angle value (<45°). Angles of 10 to 20° indicate excellent wetting.
This standard outlines a method for evaluating delamination and corrosion surrounding a scribe or other artificial defect on a coated panel or test specimen exposed to a corrosive environment. It pertains to the assessment of coating degradation, encompassing critical aspects such as delamination and corrosion, both of which are significant factors in the context of shipbuilding.
Esperamos que esta guía te haya enseñado cómo aplicar la ciencia de superficies en la industria cosmética.
Ahora nos gustaría entregárselo a usted:
Droplet Lab fue fundado en 2016 por el Dr. Alidad Amirfazli, miembro de la facultad de la Universidad de York, y dos de sus investigadores, el Dr. Huanchen Chen y el Dr. Jesús L. Muros-Cobos.
Dropletlab © 2024 Todos los derechos reservados.