Revisado: 28
This is a practical guide to Surface Science for researchers working in the Semiconductors Industry.
En esta nueva guía aprenderás todo sobre:
Vamos a sumergirnos en ello.
Semiconductor manufacturers face the constant challenge of maximizing performance and refining processes. Often underestimated, surface properties play a crucial role in optimizing these performances. By measuring these properties, we gain valuable insights into material properties, processes, and device performance, ultimately leading to:
We use the important surface properties below to understand the behavior of Semiconductors products and improve their quality.
Joven – Método Laplace
Método polinómico
Ángulo de contacto dinámico
Idealmente, cuando colocamos una gota sobre una superficie sólida, existe un ángulo único entre el líquido y la superficie sólida. Podemos calcular el valor de este ángulo de contacto ideal (el llamado ángulo de contacto de Young) utilizando la ecuación de Young. En la práctica, debido a la geometría de la superficie, la rugosidad, la heterogeneidad, la contaminación y la deformación, el valor del ángulo de contacto en una superficie no es necesariamente único, sino que se encuentra dentro de un rango. Llamamos a los límites superior e inferior de este rango el ángulo de contacto de avance y el ángulo de contacto de retroceso, respectivamente. Los valores de los ángulos de contacto de avance y retroceso para una superficie sólida también son muy sensibles. Pueden verse afectados por muchos parámetros, como la temperatura, la humedad, la homogeneidad y la contaminación diminuta de la superficie y el líquido. Por ejemplo, los ángulos de contacto de avance y retroceso de una superficie pueden diferir en diferentes ubicaciones.
Las superficies y los recubrimientos prácticos muestran naturalmente histéresis de ángulo de contacto, lo que indica un rango de valores de equilibrio. Cuando medimos ángulos de contacto estáticos, obtenemos un solo valor dentro de este rango. Confiar únicamente en mediciones estáticas plantea problemas, como una repetibilidad deficiente y una evaluación incompleta de la superficie con respecto a la adherencia, la limpieza, la rugosidad y la homogeneidad.
En aplicaciones prácticas, necesitamos comprender la facilidad de dispersión del líquido de una superficie (ángulo de avance) y la facilidad de eliminación (ángulo de retroceso), como en la pintura y la limpieza. La medición de los ángulos de avance y retroceso ofrece una visión holística de la interacción líquido-sólido, a diferencia de las mediciones estáticas, que arrojan un valor arbitrario dentro del rango.
Esta información es crucial para las superficies del mundo real con variaciones, rugosidad y dinámica, lo que ayuda a industrias como la cosmética, la ciencia de los materiales y la biotecnología a diseñar superficies efectivas y optimizar los procesos.
Aprenda cómo se realiza la medición del ángulo de contacto en nuestro tensiómetro
Para una comprensión más completa de la medición del ángulo de contacto, lea nuestra medición del ángulo de contacto: la guía definitiva
Esta propiedad mide la fuerza que actúa sobre la superficie de un líquido, con el objetivo de minimizar su superficie.
Tensión superficial dinámica
La tensión superficial dinámica difiere de la tensión superficial estática, que se refiere a la energía superficial por unidad de área (o fuerza que actúa por unidad de longitud a lo largo del borde de una superficie líquida).
La tensión superficial estática caracteriza el estado de equilibrio de la interfaz líquida, mientras que la tensión superficial dinámica explica la cinética de los cambios en la interfaz. Estos cambios podrían implicar la presencia de tensioactivos, aditivos o variaciones en la temperatura, la presión y la composición en la interfaz.
La tensión superficial dinámica es esencial para los procesos que implican cambios rápidos en la interfaz líquido-gas o líquido-líquido, como la formación de gotas y burbujas o la coalescencia (cambio de área superficial), el comportamiento de las espumas y el secado de pinturas (cambio de composición, por ejemplo, evaporación del solvente). Lo medimos analizando la forma de una gota colgante a lo largo del tiempo.
La tensión superficial dinámica se aplica a diversas industrias, incluidas las cosméticas, los recubrimientos, los productos farmacéuticos, la pintura, los alimentos y las bebidas, y los procesos industriales, donde la comprensión y el control del comportamiento de las interfaces líquidas son esenciales para la calidad del producto y la eficiencia del proceso.
Aprenda cómo se realiza la medición de la tensión superficial en nuestro tensiómetro
Para una comprensión más completa de la medición de la energía superficial, lea nuestra medición de la tensión superficial: la guía definitiva
Aprenda cómo se realiza la medición de la energía superficial en nuestro tensiómetro
Para una comprensión más completa de la medición de la energía superficial, lea nuestra medición de la energía superficial: la guía definitiva
El ángulo de deslizamiento mide el ángulo en el que una película líquida se desliza sobre una superficie sólida. Se emplea comúnmente para evaluar la resistencia al deslizamiento de una superficie.
Aprenda cómo se realiza la medición del ángulo de deslizamiento en nuestro tensiómetro
Para una comprensión más completa de la medición del ángulo de deslizamiento, lea nuestra medición del ángulo de deslizamiento: la guía definitiva
Within the Semiconductors industry, several case studies exemplify the advantages of conducting surface property measurements.
In photolithography, meticulous pattern creation is key to manufacturing complex semiconductor devices. This process relies heavily on the delicate interplay between the photoresist and the substrate. Photoresist adhesion to the substrate acts as a linchpin, directly determining the sharpness and precision of the resulting patterns. To achieve optimal results, manufacturers delve into the surface science of these properties. By examining the substrate’s surface energy and analyzing the contact angle exhibited by the photoresist, they gain valuable insights to fine-tune adjustments.
This refining process enhances adhesion properties, ultimately leading to a seamless pattern transfer. The benefits are manifold, including increased yields, sharper results, and a significant reduction in defects throughout the lithography process.
Chip packaging relies heavily on adhesives to securely bind the delicate semiconductor die to its protective casing. However, a major challenge arises from leftover adhesive residue, which can negatively impact device reliability.
To combat this issue, manufacturers meticulously measure and manage the sliding angle of the packaging material during application. This precise control ensures that the liquid adhesive smoothly glides away, leaving no unwanted residue behind. This optimization delivers two key benefits: firstly, it significantly reduces the risk of electrical shorts or unintended connections, and secondly, it effectively boosts the overall electrical performance of the device.
To achieve successful immersion lithography, meticulous management of the immersion fluid is crucial. A major failure point is the receding meniscus event, which leaves residual liquid behind on the wafer as a thin film or droplets. Ideally, the immersion fluid should be confined near the lens, allowing the wafer to scan smoothly during exposure.
For a semiconductor manufacturer, the meniscus failure mechanism remained a significant hurdle, hindering the successful implementation of immersion lithography. Recognizing the critical role of surface forces in drainage and pattern collapse during lithography, they sought a solution from a laboratory. The scientists, understanding the importance, developed a new fluid formulation with precisely tailored surface tension characteristics that facilitated proper liquid drainage, eliminating the meniscus issue.
Si está interesado en implementar estas u otras aplicaciones, póngase en contacto con nosotros.
In an industry where precision reigns supreme, where do Semiconductors manufacturers turn to ensure their products can survive scrutiny? The answer lies in standards and guidelines: the compass that guides cosmetics manufacturers through the complex maze of quality and performance.
In ULSI fabrication the particle contamination on silicon wafer can impact the final yield badly. To suppress particle surfactants can be added. In this regard, D1331-14 covers the guidelines to evaluate the effectiveness of surface active agents in reducing surface tension. This method also helps in predicting the interactions between liquids and solid surfaces that can be used to establish wetting properties.
Silicon wafers with hydrophobic surfaces can be bonded at room temperature (RT) with the help of a dip in diluted HF and that becomes possible due to Dispersion van der Waals forces. D7490-13 standard takes the help the concept that total free energy at a surface is the sum of contributions from different intermolecular forces, such as dispersion, polar and hydrogen bonding. This test method provides a procedure to calculate the surface properties like surface tension and its dispersion and polar components of the solid.
Esperamos que esta guía te haya enseñado cómo aplicar la ciencia de superficies en la industria cosmética.
Ahora nos gustaría entregárselo a usted:
Droplet Lab fue fundado en 2016 por el Dr. Alidad Amirfazli, miembro de la facultad de la Universidad de York, y dos de sus investigadores, el Dr. Huanchen Chen y el Dr. Jesús L. Muros-Cobos.
Dropletlab © 2024 Todos los derechos reservados.