Revisado: 28
This is a practical guide to Surface Science for researchers working in the Pharmaceutical Industry.
En esta nueva guía aprenderás todo sobre:
Vamos a sumergirnos en ello.
The pharmaceutical industry divides into major segments, including generic drugs, over-the-counter (OTC) medicines, bulk drugs, vaccines, contract research and manufacturing (CRO and CMO), biosimilars, and biologics. Characterizing pharmaceutical powders involves understanding surface properties, which play an important role in processes like liquid penetration into tablets and granules, the spreading of powders in liquids, phase separation, and the formation and stability of emulsions. Additionally, understanding processes such as adsorption, surface tension, and friction at phase interfaces is essential to achieving optimal conditions in pharmaceutics.
We use the important surface properties below to understand the behavior of Pharmaceutical products and improve their quality.
Joven – Método Laplace
Método polinómico
Ángulo de contacto dinámico
Idealmente, cuando colocamos una gota sobre una superficie sólida, existe un ángulo único entre el líquido y la superficie sólida. Podemos calcular el valor de este ángulo de contacto ideal (el llamado ángulo de contacto de Young) utilizando la ecuación de Young. En la práctica, debido a la geometría de la superficie, la rugosidad, la heterogeneidad, la contaminación y la deformación, el valor del ángulo de contacto en una superficie no es necesariamente único, sino que se encuentra dentro de un rango. Llamamos a los límites superior e inferior de este rango el ángulo de contacto de avance y el ángulo de contacto de retroceso, respectivamente. Los valores de los ángulos de contacto de avance y retroceso para una superficie sólida también son muy sensibles. Pueden verse afectados por muchos parámetros, como la temperatura, la humedad, la homogeneidad y la contaminación diminuta de la superficie y el líquido. Por ejemplo, los ángulos de contacto de avance y retroceso de una superficie pueden diferir en diferentes ubicaciones.
Las superficies y los recubrimientos prácticos muestran naturalmente histéresis de ángulo de contacto, lo que indica un rango de valores de equilibrio. Cuando medimos ángulos de contacto estáticos, obtenemos un solo valor dentro de este rango. Confiar únicamente en mediciones estáticas plantea problemas, como una repetibilidad deficiente y una evaluación incompleta de la superficie con respecto a la adherencia, la limpieza, la rugosidad y la homogeneidad.
En aplicaciones prácticas, necesitamos comprender la facilidad de dispersión del líquido de una superficie (ángulo de avance) y la facilidad de eliminación (ángulo de retroceso), como en la pintura y la limpieza. La medición de los ángulos de avance y retroceso ofrece una visión holística de la interacción líquido-sólido, a diferencia de las mediciones estáticas, que arrojan un valor arbitrario dentro del rango.
Esta información es crucial para las superficies del mundo real con variaciones, rugosidad y dinámica, lo que ayuda a industrias como la cosmética, la ciencia de los materiales y la biotecnología a diseñar superficies efectivas y optimizar los procesos.
Aprenda cómo se realiza la medición del ángulo de contacto en nuestro tensiómetro
Para una comprensión más completa de la medición del ángulo de contacto, lea nuestra medición del ángulo de contacto: la guía definitiva
Esta propiedad mide la fuerza que actúa sobre la superficie de un líquido, con el objetivo de minimizar su superficie.
Tensión superficial dinámica
La tensión superficial dinámica difiere de la tensión superficial estática, que se refiere a la energía superficial por unidad de área (o fuerza que actúa por unidad de longitud a lo largo del borde de una superficie líquida).
La tensión superficial estática caracteriza el estado de equilibrio de la interfaz líquida, mientras que la tensión superficial dinámica explica la cinética de los cambios en la interfaz. Estos cambios podrían implicar la presencia de tensioactivos, aditivos o variaciones en la temperatura, la presión y la composición en la interfaz.
La tensión superficial dinámica es esencial para los procesos que implican cambios rápidos en la interfaz líquido-gas o líquido-líquido, como la formación de gotas y burbujas o la coalescencia (cambio de área superficial), el comportamiento de las espumas y el secado de pinturas (cambio de composición, por ejemplo, evaporación del solvente). Lo medimos analizando la forma de una gota colgante a lo largo del tiempo.
La tensión superficial dinámica se aplica a diversas industrias, incluidas las cosméticas, los recubrimientos, los productos farmacéuticos, la pintura, los alimentos y las bebidas, y los procesos industriales, donde la comprensión y el control del comportamiento de las interfaces líquidas son esenciales para la calidad del producto y la eficiencia del proceso.
Aprenda cómo se realiza la medición de la tensión superficial en nuestro tensiómetro
Para una comprensión más completa de la medición de la energía superficial, lea nuestra medición de la tensión superficial: la guía definitiva
Aprenda cómo se realiza la medición de la energía superficial en nuestro tensiómetro
Para una comprensión más completa de la medición de la energía superficial, lea nuestra medición de la energía superficial: la guía definitiva
El ángulo de deslizamiento mide el ángulo en el que una película líquida se desliza sobre una superficie sólida. Se emplea comúnmente para evaluar la resistencia al deslizamiento de una superficie.
Aprenda cómo se realiza la medición del ángulo de deslizamiento en nuestro tensiómetro
Para una comprensión más completa de la medición del ángulo de deslizamiento, lea nuestra medición del ángulo de deslizamiento: la guía definitiva
Within the Pharmaceutical industry, several case studies exemplify the advantages of conducting surface property measurements.
Consider a scenario where a pharmaceutical company develops a new oral drug formulation. The drug’s success depends on its ability to dissolve quickly and be absorbed by the body. By measuring the wetting angle of the drug solution on various excipient surfaces, such as the tablet matrix and coating materials, the company can identify which materials promote optimal wetting and dissolution. A lower contact angle indicates better wetting and faster dissolution, leading to improved bioavailability and therapeutic efficacy.
In pharmaceutical manufacturing, ensuring the cleanliness of equipment surfaces is crucial to preventing contamination and maintaining product quality. By measuring the sliding angle of liquids used in manufacturing, the company can identify surfaces that are less likely to allow liquids to adhere. This helps design equipment surfaces that are easy to clean and resistant to liquid adhesion, reducing the risk of cross-contamination and ensuring the production of safe and consistent pharmaceutical products.
Consider a pharmaceutical company developing a transdermal patch for efficient drug delivery. The patch consists of a drug reservoir and an adhesive layer, both essential for optimal drug release and secure skin adhesion. However, the company discovered a discrepancy in the surface energies of these two materials. This insight prompted further investigation into potential causes, such as poor drug adhesion or inconsistent drug delivery. The company meticulously measured the surface energy of both the drug reservoir and the adhesive material, ensuring that these components have matching surface energies for proper bonding and consistent drug release.
Consider a pharmaceutical company developing inhalable medications for respiratory conditions. The effectiveness of these medications relies on producing aerosol droplets of a precise size to effectively reach the lungs. By measuring the surface tension of the liquid formulation used in the aerosol, the company can optimize the spray characteristics to achieve the desired droplet size and uniformity. This process ensures the medication is delivered directly to the target site within the lungs, maximizing its therapeutic effect.
Si está interesado en implementar estas u otras aplicaciones, póngase en contacto con nosotros.
In an industry where precision reigns supreme, where do Pharmaceutical manufacturers turn to ensure their products can survive scrutiny? The answer lies in standards and guidelines: the compass that guides cosmetics manufacturers through the complex maze of quality and performance.
This standard provides the guidelines for surface treatments which are applicable where the ability of polymer films to retain inks, coatings, adhesives, etc. is being explored. The contact angle of water can be used as a guiding factor to define the effectiveness of surface treatments on polymer films. The water contact angle is measured by capturing an image of a liquid drop placed on a solid and then analysing it. As per the standard, a guiding contact angle range to define the level of surface treatments is given as follows:
Marginal or no treatment |
>90° |
Low treatment |
85 to 90° |
Medium treatment |
78 to 84° |
High treatment |
71 to 77° |
Very high treatment |
<71° |
This standard provides a test method for measuring the wetting tension of polyethylene and polypropylene films. In this standard surface energy is defined and formulized.
This standard also provides the details for the measurement of the contact angle of water droplets on corona-treated polymer film surfaces and in this way determines the wetting tension of the film. As per this standard, surface energy can be defined as energy that is associated with the intermolecular forces at the interface between two surfaces and it is measured as free energy per unit area. Also static contact angle is defined as an angle between a plane solid surface and the tangent drawn in the vertical plane at the interface between the plane solid surface and the surface of a droplet of liquid resting on the surface.
Esperamos que esta guía te haya enseñado cómo aplicar la ciencia de superficies en la industria cosmética.
Ahora nos gustaría entregárselo a usted:
Droplet Lab fue fundado en 2016 por el Dr. Alidad Amirfazli, miembro de la facultad de la Universidad de York, y dos de sus investigadores, el Dr. Huanchen Chen y el Dr. Jesús L. Muros-Cobos.
Dropletlab © 2024 Todos los derechos reservados.